Measurement and Accounting for net CO_2 Injection in a CO_2 -EOR Complex

Sanjay R. Mawalkar (sanjay@battelle.org), Neeraj Gupta, Matt Place, Ashwin Pasumarti, and Andrew Burchwell, Battelle, 505 King Ave., Columbus, Ohio 43201; Rick Pardini, Core Energy LLC.

ABSTRACT

The Midwest Regional Carbon Sequestration Partnership (MRCSP) is currently conducting their Phase III (large-scale) CO₂ injection test in conjunction with EOR in a series of Silurian-age (Niagaran) pinnacle reefs in northern Michigan. Approximately 800 pinnacle reefs have been identified in the northern reef trend. MRCSP is monitoring nine of these reefs, which are at various stages of active EOR operations. Pure CO_2 is sourced from a natural gas processing facility (C-10) and co-mingled with recycle gas produced from all the EOR reefs at a central processing facility (CPF) and re-injected back into the reefs as part of a closed-circuit production/injection loop. This poster presents the accounting methodology of CO₂, flow & pressure monitoring systems, and long-term performance trends for the individual reefs and collectively for the reef system.

ACCOUNTING FOR PRODUCTION PARAMETERS AND CO₂ MATERIAL BALANCE

Battelle continuously monitors production parameters, including CO₂ injected, CO₂ produced, Oil, and Brine from various active EOR reefs. Production numbers from EOR operations are routinely updated in monthly and quarterly reports to DOE and other stakeholders. Among the parameters tracked include:

• Daily pure CO₂ availability from the gas processing plant

1,600,000

,400,000

1,200,000

,000,000

800,000

600,000

400,000

200,000

- Daily production of recycle CO_2 gas from active EOR reefs
- Daily injected quantity of pure + recycle CO_2 in all EOR reefs
- Vented gas

Feb 2013 - Jun 2016, Total CO2 Injected , Active Reefs + D-33 Reef

2/13 2/13 6/13 8/13 8/13 8/14 8/14 12/14 8/14 12/15 8/15 8/15 8/15 8/15 8/15 12/15 8/15 8/15 8/15 6/15 6/16 12/15 6/16 12/15 12/12/15 12/1

- Production of oil and brine
- CO₂ composition, tubing/casing pressures, compressor station parameters, etc.

	0								- A	
	0	B EOR Unit	C-19 EOR	C-30/31	C-6 EOR	CC-2 EOR	CC-5/6 EOR	D-33 EOR	D-35 EOR	D-36 EOR
			Unit	EOR Unit	Unit	Unit	Unit	Unit	Unit	Unit
	CO2 Injected (MT)	54,234	139,360	316,848	67,092	162,074	88,299	268,897	56,840	271,331
	CO2 Produced (MT)	0	0	242,998	153,890	123,969	21,339	167	42,073	289,272

700,000

600,000

500,000 🕞

400,000 0

300,000

200,000 **č**

100,000

Feb 2013 - Jun 2016, Pure CO2 from C-10

2/13 4/13 6/13 8/13 8/13 8/13 8/13 8/14 8/14 8/14 8/15 8/15 8/15 8/15 8/15 12/15 8/15 8/15 12/15 8/15 8/15 8/15 12/15 8/15 8/15 8/15 8/15 12/15 12/15 12/15 8/15 8/15 12

800

700

600

ک ₄₀₀

300

200

100

02

Relational databases in MS Access and SQL Server are used for tracking daily production numbers. These databases have mass-balance queries for identifying reporting errors.

1,000

900

800

700

600

500

400

300

200

100

(TM)

C02

INDIVIDUAL REEF PRESSURE MONITORING AND PERFORMANCE BENCHMARKS

1,800

1,600

1,400

1,200

800

600

400

200

L 1,000

Life-Cycle of a Late Stage D-33 EOR Reef using Material Balance Approach

Bottomhole Pressure, Temperature and Flow Monitoring

9-Panel Dashboard of Performance Benchmarks

OOIP estimates when combined with

material balance of production fluids

by monitoring pressure history and

to compute EOR performance

Acknowledgement

during various phases of EOR allows us

benchmarks. These are further modified

reservoir conditions during CO₂ injection.

MRCSP is led by Battelle and supported by

Agreement No. DE-FC26-0NT42589 with

co-funding from several other partners.

acknowledged for providing access and

field implementation support for the large-

scale test. Significant contributions were

also provided by Kathy Dungey and Joe

U.S. DOE-NETL under Cooperative

Core Energy, LLC and its staff are

Coppersmith at Core Energy.

